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We perform a quantum simulation of an Ising model with long-range interactions and both trans-
verse and longitudinal fields – the most general external field configuration – in a system of 6 to
10 trapped atomic ions. Quantum fluctuations at zero temperature drive the ground state spin
ordering through several classical first-order phase transitions as the strength of the longitudinal
field is increased. The Hamiltonian under study generates a fractal Devil’s staircase structure and
maps onto a large number of many-body and energy-optimization problems, showing how quantum
simulation can potentially find solutions that are classically intractable.

Many-body quantum systems, such as high-TC super-
conductors [1] or complex configurations of interacting
spins [2–5], are often difficult to describe analytically or
calculate numerically on account of the exponential scal-
ing of the Hilbert space with the system size. For in-
stance, predicting the behavior of some simple quantum
spin models is currently limited to just a few dozen spins
[6], while solving a fully-connected frustrated Ising model
is known to be an NP-complete problem [7]. Instead,
quantum simulators, in which a well-controlled quantum
system is used to simulate a system of interest [8, 9],
may be employed to calculate ground state or dynamical
properties of a Hamiltonian that would otherwise prove
classically intractable or non-integrable.

Quantum simulators require excellent coherence prop-
erties and high-fidelity readout and control. To date,
simple quantum simulations have been performed in a
variety of systems, using neutral atoms in optical lat-
tices [10–12], nuclear magnetic resonance [13], photons
[14, 15], and trapped atomic ions [16–25]. Early trapped
ion simulations of many-body physics demonstrated tun-
able spin-spin interactions [16, 17], engineered entangled
spin states through dissipation [20], and observed the on-
set of a quantum phase transition as the number of spins
was increased from 2 to 9 [21]. Initial studies of frustra-
tion within the context of the antiferromagnetic (AFM)
Ising model [18] were later enhanced by tuning the range
of interaction and the degree of frustration in a system
of up to 16 spins [24].

In this Letter, we report the first quantum simulation
of an AFM Ising model with long-range interactions and
both transverse and longitudinal magnetic fields. The
addition of the longitudinal field allows for the applica-
tion of an arbitrary magnetic field relative to the Ising
couplings and the creation and observation of new spin
phases at zero temperaure. As the strength of the longi-
tudinal field is increased from Bx = 0, the system passes
through N/2 first-order phase transitions driven by quan-
tum fluctuations, where N is the number of spins. Deter-

mination of the ground state spin ordering for differing
longitudinal fields reveals a Wigner-crystal spin struc-
ture [26], maps on to a number of energy minimization
problems [27, 28], and shows hints of a complete Devil’s
staircase [29] which would emerge for convex long-range
interactions as N →∞.

The system is described by the Hamiltonian

H =
∑
i<j

Ji,jσ
(i)
x σ(j)

x +Bx
∑
i

σ(i)
x +By(t)

∑
i

σ(i)
y (1)

where Ji,j gives the strength of the Ising coupling be-
tween spins i and j, Bx is the magnitude of the longitu-
dinal magnetic field, By(t) is a time-dependent transverse

field, and σ
(i)
α is the Pauli spin operator for the ith par-

ticle along the α direction. We tune Ji,j > 0 to generate
AFM interactions between the spins that fall off with dis-
tance. At t = 0 the spins are initialized to point along the
direction of the total magnetic field ~B = Bxx̂ + By(0)ŷ,
with By(0)� J , which is the instantaneous ground state
of the Hamiltonian in Eqn. 1 to good approximation.
The system will remain in the ground state if the trans-
verse field By(t) is ramped down adiabatically. The re-
sulting spin order at the end of the ramp when By = 0
would then reveal the ground state of an Ising Hamil-
tonian with long-range interactions and a longitudinal
field.

Fig. 1(a) shows the energy eigenvalues obtained by
diagonalizing Eqn. 1 when By = 0 for a system with 6
spins. The ground state passes through three level cross-
ings as the strength of the longitudinal field Bx is in-
creased from Bx = 0, indicating three first-order phase
transitions separating four distinct spin phases. When
Bx is set at a phase transition and By(t) is ramped down,
as in Fig. 1(b), the critical gap between the ground and
first coupled excited state closes on account of the degen-
eracy of spin orderings at the phase transition.

Long-range interactions allow for the creation of many
more spin phases compared with a nearest-neighbor-only
Ising model. Consider a nearest-neighbor AFM model
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FIG. 1. (a) Low-lying energy eigenvalues of Eqn. 1 for By = 0
and N = 6, with the long-range Ji,j couplings determined
from experimental conditions (see text). Level crossings (in-
set) indicate the presence of first-order phase transitions in
the ground state. (b) The critical gap ∆c between the ground
state energy Eg and first coupled excited state energy shrinks
to zero at the three phase transitions (vertical dashed lines).
Inset: low-lying energy levels of Eqn. 1 as the transverse field
By is varied with Bx = 0.

with N/2 “up” spins, N total spins, and a ground-state
ordering |.. ↓↑↓↑↓↑ ..〉x. An excited state at Bx = 0 may
have an additional spin polarized along |↓〉x, either by
making a kink of type |.. ↓↑↓↓↑↓ ..〉x or a spin defect of
type |.. ↓↑↓↓↓↑ ..〉x. The interaction energy cost of mak-
ing n kinks is 2nJ , while the field energy gain is 2nBx.
At Bx/J = 1 multiple energy levels intersect to give a
first-order phase transition. Similarly, the energy cost of
making n spin defects is 4nJ and the gain is 2nBx, so a
second phase transition occurs at Bx/J = 2. Only three
different spin phases are observable as Bx is varied from
0→∞, independent of N , and there is a large degener-
acy of spin eigenstates at the phase transitions. The pres-
ence of long-range interactions lifts this degeneracy and
admits N/2+1 distinct spin phases, with {0, 1, . . . , N/2}
spins in state |↑〉x.

Observation of these N/2 + 1 classical phases is made
possible only by quantum fluctuations in our quantum
simulator. The second term in Eq. 1 commutes with
the first, so the system is classical when By = 0. How-
ever, varying Bx across a phase boundary in a zero tem-
perature system does not lead to a new ground state,
since thermal fluctuations are required to drive the tran-
sition. Observation of spin phases at intermediate values

of Bx and zero temperature thus requires quantum fluc-
tuations [30], which are provided by the non-commuting
third term in the Hamiltonian (Eqn. 1).

The effective spin system is encoded in a linear chain
of trapped 171Yb ions [31], with zero effective spin tem-
perature. The spin states |↑〉z and |↓〉z are represented
by the hyperfine clock states 2S1/2 |F = 1,mF = 0〉 and
|F = 0,mF = 0〉, respectively, which have a frequency
splitting of ωS/2π = 12.642819 GHz [32]. A weak mag-
netic field of ∼ 5 G defines the quantization axis. The
states are detected by illuminating the ions with laser
light resonant with the 2S1/2 to 2P1/2 cycling transi-
tion at 369.5 nm and imaging the spin-dependent flu-
orescence. Either N = 6 or N = 10 ions are confined
in a three-layer rf Paul trap with a center-of-mass axial
trap frequency fz = 0.7 MHz and transverse frequencies
fx = 4.8 MHz and fy = 4.6 MHz and interact with each
other via their collective modes of motion.

The Ising couplings Ji,j are generated by globally ir-
radiating the ions with two off-resonant λ = 355 nm
laser beams which drive stimulated Raman transitions
[33, 34]. The beams intersect at right angles so that their

wavevector difference ∆~k points along the x-direction of
transverse ion motion, perpendicular to the linear chain.
Acousto-optic modulators imprint beatnote frequencies
of ωS±µ between the beams, imparting a spin-dependent
optical dipole force at frequency µ [35]. In the limit where
the beatnotes are sufficiently far from the transverse nor-
mal modes ωm, we obtain a spin-spin coupling given by

Ji,j = ΩiΩj
~(∆~k)2

2M

∑
m

bi,mbj,m
µ2 − ω2

m

(2)

in the Lamb-Dicke limit, where Ωi is the Rabi frequency
of the ith ion, M is the single ion mass, and bi,m is the
normal-mode transformation matrix for ion i in mode m
[17]. The Ising interactions are long-range and fall off
approximately as Ji,j ∼ 1/|i − j|α, with α = 0.94 for
N = 6 and α = 0.83 for N = 10.

The effective transverse and longitudinal magnetic
fields By(t) and Bx drive Rabi oscillations between the
spin states |↓〉z and |↑〉z. Each effective field is gener-
ated by a pair of Raman laser beams with a beatnote
frequency of ωS , with the field amplitude determined by
the beam intensities. The field directions are controlled
through the beam phases relative to the average phase ϕ
of the two sidebands which give rise to the σxσx inter-
action in Eqn. 2. In particular, an effective field phase
offset of 0◦ (90◦) relative to ϕ generates a σy (σx) inter-
action.

Each experiment begins with 3 ms of Doppler cool-
ing, followed by optical pumping to the state |↓↓↓ ..〉z
and 100 µs of Raman sideband cooling that prepares the
motion of all modes along ∆~k in the Lamb-Dicke limit.
The spins are then coherently rotated into the equatorial
plane of the Bloch sphere so that they point along the
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FIG. 2. (Color) (a) Magnetization (mz = N↑−N↓) of a chain
of 6 ions for increasing axial field strength. Red, solid: pre-
dicted magnetization value, with the step locations indicat-
ing the first-order phase transitions. Blue diamonds: average
magnetization of 4000 experiments performed at each value
of Bx. Black, dashed: magnetization of the most probable
state (see inset) found at each Bx value. (b) Camera images
of the ground states found at each step in (a): |↓↑↓↑↓↑〉z and
|↑↓↑↓↑↓〉z (mz = 0), |↓↑↓↓↑↓〉z (mz = −2), |↓↓↑↓↓↓〉z and
|↓↓↓↑↓↓〉z (mz = −4), and |↓↓↓↓↓↓〉z (mz = −6).

direction ~B = Bxx̂+By(0)ŷ, where Bx is varied between
different simulations. The Hamiltonian (Eqn. 1) is then
switched on at t = 0 with the chosen value of Bx and
By(0) = 5Jmax, where Jmax is the largest spin-spin cou-
pling (typically 2π×0.6-0.7 kHz). The transverse field is
ramped down to By ≈ 0 exponentially with a time con-
stant of 600 µs and a total time of 3 ms, with the ramp
times chosen to minimize decoherence effects while max-
imizing adiabaticity. At t = 3 ms, the Hamiltonian is
switched off and the x−component of each spin is mea-
sured by applying a global π/2 rotation about the ŷ axis,
illuminating the ions with resonant light, and imaging
the spin-dependent fluorescence using an intensified CCD
camera (Princeton Instruments PIMax3:1024i). The ex-
periments are repeated 4000 times to determine the prob-
ability of each possible spin configuration.

The camera measurement cycle for each experiment

takes 10 ms, with 3 ms of fluorescence collection, 3 ms of
phosphor decay from the CCD intensifier, and 3.6 ms of
readout time. For all data, we restrict the region of inter-
est on the CCD to an approximately 128× 7 bin window
to speed readout from the device. We compensate for
detection errors (ε = 7% for a single spin) by multiplying
a matrix describing the expected multi-spin error by the
vector containing the measured probability of each spin
configuration [36].

We investigate the order parameter of net magnetiza-
tion, mz = N↑−N↓ as we vary the strength of the longi-
tudinal field Bx. The magnetization of the ground state
spin ordering of Eq. 1 is expected to yield a staircase
with sharp steps at the phase transitions (red line in Fig.
2(a)) when By = 0 [29]. The experimental data (blue
points in Fig. 2(a)) show an averaged magnetization with
heavily broadened steps due largely to non-adiabatic evo-
lution during the exponential ramp that populate excited
states. However, the ground state spin configuration at
each value of Bx may be extracted by looking at the
probability distribution of all spin states and selecting
the most prevalent state (inset of Fig. 2(a)) [37]. The
magnetization of the spin states found by this method
(black points in Fig. 2(a)) agree well with the theoreti-
cal prediction.

Direct images of the ground state spin phases are
shown in Fig. 2(b), with approximately 1000 averaged
images per line. Each box contains an ion that scatters
many photons when in the state |↑〉z and essentially no
photons when in the state |↓〉z. For magnetizations of 0
and −4, two ground state orderings are observed due to
the left-right symmetry of the spin-spin interactions. In
cases where left-right reflection of the spin chain produces
a new spin ordering with degenerate energy, the summed
probability of both states is used when determining the
most probable state.
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state spin phases as Bx is varied in a 6-ion system. Black
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The probability of populating the four distinct ground
states as Bx is varied, shown in Fig. 3, further probes
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FIG. 4. (Color) (a) Magnetization of a chain of 10 ions for in-
creasing axial field strength. The red, blue, and black curves
correspond to the theoretical magnetization, average mea-
sured magnetization, and magnetization of the most probable
state (respectively) for increasing Bx. (b) Camera images of
the theoretical ground states found experimentally at each
step in (a).

the multiple phase transitions. Fig. 1 shows that as
Bx/Jmax approaches a phase transition, the energy lev-
els of the spin eigenstates on opposing sides of the transi-
tion cross, and the critical gap ∆c between them shrinks.
The smooth crossover between the four distinct ground-
state spin phases in Fig. 3 therefore arises from increas-
ingly diabatic simulations near the energy-level crossings
at the first-order transitions. Comparing with Fig. 1(b),
we find higher probabilities of creating the theoretical
ground state when the critical gap ∆c is large. Simula-
tions that are more adiabatic could be expected to give
both larger maximum probabilities in each of the four
different ground states and sharper crossovers between
the state populations near the phase transitions.

Figure 4 plots the magnetization of a 10-ion chain for
increasing strengths of the longitudinal field Bx, along
with the associated camera images of the N/2 + 1 = 6
distinct ground state phases. Similarly to the 6-ion case,
we experimentally determine the ground state ordering
by selecting the most prevalent of the 210 = 1024 possible

states. Because the critical gap ∆c is much smaller for a
10-ion system, the reduction of the transverse field By(t)
is much less adiabatic, and only ∼ 5% of the total pop-
ulation lands in the theoretical ground state for much of
the data in Fig. 4(a). We are therefore more sensitive to
experimental error sources (of order a few percent) such
as imperfect initialization and slow drifts in the strength
of Ji,j , as well as statistically-limited quantum projection
noise of order ≈ 1%.

For the 10-ion chain, Fig. 4(b) shows the interesting
spin structure that emerges as Bx is varied. For a given
Bx and associated number of bright ions q, the ground-
state spin configuration of Eqn. 1 (with By = 0) solves
the problem of finding the lowest energy arrangement
of q charged particles on N lattice sites. The creation
of such periodic spin structures realizes a generalized
Wigner crystal, which is the configuration adopted by
a low-density electron gas when the Coulomb repulsion
dominates over the kinetic energy [38]. As the system
size N → ∞ and Bx is increased, the magnetization re-
veals a fractal staircase structure that arises since every
rational filling factor (of which there are infinitely many)
is the ground state for some value of Bx [29].

In conclusion, we have performed a quantum simula-
tion of an Ising model with both transverse and longi-
tudinal magnetic fields within a linear chain of trapped
ions. Long-range spin-spin couplings enabled the exis-
tence of a large number of ground state spin phases at
zero temperature, while quantum fluctuations inherent in
our quantum simulations enabled their observation. As
the system size is scaled up, such quantum simulations
can begin to solve diverse problems in many-body physics
where classical calculation becomes intractable.

This work is supported by the U.S. Army Research Of-
fice (ARO) Award W911NF0710576 with funds from the
DARPA Optical Lattice Emulator Program, ARO award
W911NF0410234 with funds from the IARPA MQCO
Program, and the NSF Physics Frontier Center at JQI.
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